Send to

Choose Destination
See comment in PubMed Commons below
J Gen Physiol. 2005 Aug;126(2):137-50. Epub 2005 Jul 11.

Potentiation of TRPM7 inward currents by protons.

Author information

Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032, USA.


TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from -100 to -40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an approximately 10-fold increase at pH 4.0 and 1-2-fold increase at pH 6.0. Several lines of evidence suggest that protons enhance TRPM7 inward currents by competing with Ca(2+) and Mg(2+) for binding sites, thereby releasing blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal increase in TRPM7 currents when the external Ca(2+) and Mg(2+) concentrations were increased. Third, the apparent affinity for Ca(2+) and Mg(2+) was significantly diminished at elevated external H(+) concentrations. Fourth, the anomalous-mole fraction behavior of H(+) permeation further suggests that protons compete with divalent cations for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca(2+) and Mg(2+) bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H(+) concentrations, the affinity of TRPM7 for Ca(2+) and Mg(2+) is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore, we showed that the endogenous TRPM7-like current, which is known as Mg(2+)-inhibitable cation current (MIC) or Mg nucleotide-regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center