Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors

Opt Lett. 2005 Jun 15;30(12):1554-6. doi: 10.1364/ol.30.001554.

Abstract

In the race toward attosecond pulses, for which high-order harmonics generated in rare gases are the best candidates, both the harmonic spectral range and the spectral phase have to be controlled. We demonstrate that multilayer extreme-ultraviolet chirped mirrors can be numerically optimized and designed to compensate for the intrinsic harmonic chirp that was recently discovered and that is responsible for temporal broadening of pulses. A simulation shows that an optimized mirror is capable of compressing the duration from approximately 260 to 90 as. This new technique is an interesting solution because of its ability to cover a wider spectral range than other technical devices that have already been proposed to overcome the chirp of high harmonics.