Send to

Choose Destination
Glia. 2005 Dec;52(4):261-75.

CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation.

Author information

Pharmacology Unit, Facultad de Medicina, Departamento de Ciencias M├ędicas and Centro Regional de Investigaciones Biom├ędicas, Universidad de Castilla-La Mancha, Albacete, Spain.


Ischemia has different consequences on the survival of astrocytes and neurons. Thus, astrocytes show a remarkable resistance to short periods of ischemia that are well known to cause neuronal death. We have used a cell culture model of stroke, oxygen, and glucose deprivation (OGD), to clarify the mechanisms responsible for the exclusive resistance of astrocytes to ischemia. The expression of genes implicated in both ischemia-induced astrocyte death and post-ischemic survival was analysed by the RNA differential display technique. Our study revealed that the expression of the CEBP homologous protein (CHOP)-coding gene is promptly an intensely upregulated following astrocyte oxygen and glucose deprivation. CHOP mRNA induction was accompanied by the activation of other genes (grp78, grp95) that, alike CHOP, are involved in the endoplasmic reticulum (ER) stress response. In addition, drugs that cause ER calcium depletion or protein N-glycosylation inhibition mimicked the effects of OGD on astrocyte survival, further supporting the involvement of ER in the astrocyte responses to OGD. Our experiments also demonstrated that upregulation of CHOP during the ER stress response is required for ischemia to cause astrocyte death. Not only the levels of CHOP mRNA and protein correlate perfectly with the degree of OGD-triggered cell injury, but also astrocyte death induced by OGD is significantly overcome by CHOP antisense oligonucleotide treatment. Nevertheless, we observed that astrocytes undergo apoptosis only when CHOP is permanently upregulated, and not when CHOP increases are transient. Finally, we found that the extent of CHOP induction is determined by the length of the ischemic stimulus. Taken together, our results indicate that permanent upregulation of CHOP is decisive for the induction of astrocyte death by OGD.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center