Format

Send to

Choose Destination
Biophys J. 1992 Apr;62(1):136-43; discussion 143-4.

A single nonpolar residue in the deep pore of related K+ channels acts as a K+:Rb+ conductance switch.

Author information

1
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030.

Abstract

K+ and Rb+ conductances (GK+ and GRb+) were investigated in two delayed rectifier K+ channels (Kv2.1 and Kv3.1) cloned from rat brain and a chimera (CHM) of the two channels formed by replacing the putative pore region of Kv2.1 with that of Kv3.1. CHM displayed ion conduction properties which resembled Kv3.1. In CHM, GK+ was three times greater than that of Kv2.1 and GRb+/GK+ = 0.3 (compared with 1.5 and 0.7, respectively, in Kv2.1 and Kv3.1). A point mutation in CHM L374V, which restored 374 to its Kv2.1 identity, switched the K+/Rb+ conductance profiles so that GK+ was reduced fourfold, GRb+ was increased twofold, and GRb+/GK+ = 2.8. Quantitative restoration of the Kv2.1 K+/Rb+ profiles, however, required simultaneous point mutations at three nonadjacent residues suggesting the possibility of interactions between residues within the pore. The importance of leucine at position 374 was verified when reciprocal changes in K+/Rb+ conductances were produced by the mutation of V374L in Kv2.1 (GK+ was increased threefold, GRb+ was decreased threefold, and GRb+/GK+ = 0.2). We conclude that position 374 is responsible for differences in GK+ and GRb+ between Kv2.1 and Kv3.1 and, given its location near residues critical for block by internal tetraethylammonium, may be part of a cation binding site deep within the pore.

PMID:
1600093
PMCID:
PMC1260507
DOI:
10.1016/S0006-3495(92)81800-3
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center