Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Bioinformatics. 2005 Jul 5;6:168.

High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID).

Author information

1
Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. barry@discover.nci.nih.gov

Abstract

BACKGROUND:

We previously developed GoMiner, an application that organizes lists of 'interesting' genes (for example, under-and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. The original version of GoMiner was oriented toward visualization and interpretation of the results from a single microarray (or other high-throughput experimental platform), using a graphical user interface. Although that version can be used to examine the results from a number of microarrays one at a time, that is a rather tedious task, and original GoMiner includes no apparatus for obtaining a global picture of results from an experiment that consists of multiple microarrays. We wanted to provide a computational resource that automates the analysis of multiple microarrays and then integrates the results across all of them in useful exportable output files and visualizations.

RESULTS:

We now introduce a new tool, High-Throughput GoMiner, that has those capabilities and a number of others: It (i) efficiently performs the computationally-intensive task of automated batch processing of an arbitrary number of microarrays, (ii) produces a human-or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories, (iii) integrates the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories, (iv) provides a fast form of 'false discovery rate' multiple comparisons calculation, and (v) provides annotations and visualizations for relating transcription factor binding sites to genes and GO categories.

CONCLUSION:

High-Throughput GoMiner achieves the desired goal of providing a computational resource that automates the analysis of multiple microarrays and integrates results across all of the microarrays. For illustration, we show an application of this new tool to the interpretation of altered gene expression patterns in Common Variable Immune Deficiency (CVID). High-Throughput GoMiner will be useful in a wide range of applications, including the study of time-courses, evaluation of multiple drug treatments, comparison of multiple gene knock-outs or knock-downs, and screening of large numbers of chemical derivatives generated from a promising lead compound.

PMID:
15998470
PMCID:
PMC1190154
DOI:
10.1186/1471-2105-6-168
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center