Send to

Choose Destination
Traffic. 2005 Aug;6(8):615-25.

Protein sorting to the storage vacuoles of plants: a critical appraisal.

Author information

Heidelberg Institute for Plant Sciences, Cell Biology, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.


The vacuole of plant cells is no longer considered to be a single compartment with multifunctional properties. A lot of evidence now points to the presence of multiple functionally distinct vacuolar compartments, some existing side by side in the same cell. As a consequence, the plant Golgi apparatus is faced with the problem of recognizing proteins destined for lytic and storage vacuoles and segregating them individually from the flow of secretory proteins to the cell surface. In contrast to acid hydrolases, which are sorted by BP-80-like receptors at the trans-Golgi of plant cells, the identification of receptors for storage proteins has in many ways resembled 'the search for the Holy Grail'. There are several candidates for storage protein receptors, but in no single case is the evidence entirely convincing. Much of the problem lies in the lack of consensus, sorting sequences in the proteins investigated. Other difficulties stem from 'out-of-context' heterologous expression studies. Evidence is now accumulating for the participation of hydrophobic sequences in inducing the formation of protein aggregates in the early Golgi apparatus, for which classical sorting receptors do not appear to be necessary. This review critically examines the current situation and contrasts the differences between data obtained in situ and data obtained transgenically. It highlights the so-called 'dense-vesicle' pathway and culminates with a discussion on the hitherto neglected problem of the intracellular transport of storage protein processing enzymes.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center