Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant J. 2005 Jul;43(2):284-98.

Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein.

Author information

1
Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.

Abstract

Recent data suggest that plant disease resistance (R) proteins are present in multi-protein complexes. Tomato R protein I-2 confers resistance against the fungal pathogen Fusarium oxysporum. To identify components of the I-2 complex, we performed yeast two-hybrid screens using the I-2 leucine-rich repeat (LRR) domain as bait, and identified protein phosphatase 5 (PP5) as an I-2 interactor. Subsequent screens revealed two members of the cytosolic heat shock protein 90 (HSP90) family as interactors of PP5. By performing in vitro protein-protein interaction analysis using recombinant proteins, we were able to show a direct interaction between I-2 and PP5, and between I-2 and HSP90. The N-terminal part of the LRR domain was found to interact with HSP90, whereas the C-terminal part bound to PP5. The specific binding of HSP90 to the N-terminal region of the I-2 LRR domain was confirmed by co-purifying HSP90 from tomato lysate using recombinant proteins. Similarly, the interaction between PP5 and HSP90 was established. To investigate the role of PP5 and HSP90 for I-2 function, virus-induced gene silencing was performed in Nicotiana benthamiana. Silencing of HSP90 but not of PP5 completely blocked cell death triggered by I-2, showing that HSP90 is required for I-2 function. Together these data suggest that R proteins require, like steroid hormone receptors in animal systems, an HSP90/PP5 complex for their folding and functioning.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center