Send to

Choose Destination
Plant J. 2005 Jul;43(2):191-204.

Altered microtubule dynamics by expression of modified alpha-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants.

Author information

Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.


The proper organization of cortical microtubule arrays is essential for anisotropic growth in plants but how distinct array patterns are formed is not understood. Here, we report a relationship between microtubule dynamics and array organization using transgenic plants expressing modified tubulins. When green fluorescent protein (GFP) or a hemaglutinin epitope tag was fused to the N-terminus of tubulins and expressed in Arabidopsis plants, these tubulins were incorporated into microtubules along with endogenous tubulins. Plants expressing the modified beta-tubulins were phenotypically normal and possessed transversely oriented cortical arrays in the epidermal cells of the root elongation zone; however, the expression of modified alpha-tubulins caused right-handed helical growth, increased trichome branching, and a shallow left-handed (S-form) helical array organization. In cells expressing the modified alpha-tubulins, microtubule dynamicity was suppressed and polymerization was promoted, and GFP-EB1 (End Binding 1) labeled larger regions of the microtubule end more frequently, when compared with control cells. We propose that the N-terminal appendage introduced into alpha-tubulin inhibits GTP hydrolysis, thus producing polymerization-prone microtubules with an extended GTP cap. Consistent with this interpretation, plants expressing an alpha-tubulin mutated in the GTPase-activating domain exhibited similar microtubule properties, with regard to dynamics and the localization of GFP-EB1, and showed right-handed helical growth.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center