Send to

Choose Destination
Neuron. 2005 Jul 7;47(1):71-84.

Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.

Author information

Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA.


Partial agonists produce submaximal activation of ligand-gated ion channels. To address the question of partial agonist action at the NR1 subunit of the NMDA receptor, we performed crystallographic and electrophysiological studies with 1-aminocyclopropane-1-carboxylic acid (ACPC), 1-aminocyclobutane-1-carboxylic acid (ACBC), and 1-aminocyclopentane-1-carboxylic acid (cycloleucine), three compounds with incrementally larger carbocyclic rings. Whereas ACPC and ACBC partially activate the NMDA receptor by 80% and 42%, respectively, their cocrystal structures of the NR1 ligand binding core show the same degree of domain closure as found in the complex with glycine, a full agonist, illustrating that the NR1 subunit provides a new paradigm for partial agonist action that is distinct from that of the evolutionarily related GluR2, AMPA-sensitive receptor. Cycloleucine behaves as an antagonist and stabilizes an open-cleft conformation. The NR1-cycloleucine complex forms a dimer that is similar to the GluR2 dimer, thereby suggesting a conserved mode of subunit-subunit interaction in AMPA and NMDA receptors.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center