Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2005 Jul 1;65(13):5802-11.

Selective insensitivity of ZR-75-1 human breast cancer cells to 2-methoxyestradiol: evidence for type II 17beta-hydroxysteroid dehydrogenase as the underlying cause.

Author information

1
Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.

Abstract

2-Methoxyestradiol (2-MeO-E2), a nonpolar endogenous metabolite of 17beta-estradiol, has strong antiproliferative, apoptotic, and antiangiogenic actions. Among the four human breast cancer cell lines tested (MCF-7, T-47D, ZR-75-1, and MDA-MB-435s), the ZR-75-1 cells were selectively insensitive to the antiproliferative actions of 2-MeO-E2, although these cells had a similar sensitivity as other cell lines to several other anticancer agents (5-fluorouracil, mitomycin C, doxorubicin, colchicine, vinorelbine, and paclitaxel). Mechanistically, this insensitivity is largely attributable to the presence of high levels of a steroid-selective metabolizing enzyme, the type II 17beta-hydroxysteroid dehydrogenase (17beta-HSD), in the ZR-75-1 cells, which rapidly converts 2-MeO-E2 to the inactive 2-methoxyestrone, but this enzyme does not metabolically inactivate other nonsteroidal anticancer agents. The type II 17beta-HSD-mediated conversion of 2-MeO-E2 to 2-methoxyestrone in ZR-75-1 cells followed the first-order kinetics, with a very short half-life (approximately 2 hours). In comparison, the T-47D, MCF-7, and MDA-MB-435s human breast cancer cells, which were highly sensitive to 2-MeO-E2, had very low or undetectable catalytic activity for the conversion of 2-MeO-E2 to 2-methoxyestrone. Reverse transcription-PCR analysis of the mRNA levels of three known oxidative 17beta-HSD isozymes (types II, IV, and VIII) revealed that only the type II isozyme was selectively expressed in the ZR-75-1 cells, whereas the other two isozymes were expressed in all four cell lines. Taken together, our results showed, for the first time, that the high levels of type II 17beta-HSD present in ZR-75-1 cells were largely responsible for the facile conversion of 2-MeO-E2 to 2-methoxyestrone and also for the selective insensitivity to the antiproliferative actions of 2-MeO-E2.

PMID:
15994956
DOI:
10.1158/0008-5472.CAN-04-3714
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center