Format

Send to

Choose Destination
J Theor Biol. 2006 Jan 21;238(2):279-85. Epub 2005 Jun 28.

The distribution of fitness effects among beneficial mutations in Fisher's geometric model of adaptation.

Author information

1
Department of Biology, University of Rochester, Rochester, NY 14627, USA. aorr@mail.rochester.edu

Abstract

Recent models of adaptation at the DNA sequence level assume that the fitness effects of new mutations show certain statistical properties. In particular, these models assume that the distribution of fitness effects among new mutations is in the domain of attraction of the so-called Gumbel-type extreme value distribution. This assumption has not, however, been justified on any biological or theoretical grounds. In this note, I study random mutation in one of the simplest models of mutation and adaptation-Fisher's geometric model. I show that random mutation in this model yields a distribution of mutational effects that belongs to the Gumbel type. I also show that the distribution of fitness effects among rare beneficial mutations in Fisher's model is asymptotically exponential. I confirm these analytic findings with exact computer simulations. These results provide some support for the use of Gumbel-type extreme value theory in studies of adaptation and point to a surprising connection between recent phenotypic- and sequence-based models of adaptation: in both, the distribution of fitness effects among rare beneficial mutations is approximately exponential.

PMID:
15990119
DOI:
10.1016/j.jtbi.2005.05.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center