Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Sep 2;280(35):31294-302. Epub 2005 Jun 29.

Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line.

Author information

  • 1Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.


Ca2+ and cAMP are important second messengers that regulate multiple cellular processes. Although previous studies have suggested direct interactions between Ca2+ and cAMP signaling pathways, the underlying mechanisms remain unresolved. In particular, direct evidence for Ca2+-regulated cAMP production in living cells is incomplete. Genetically encoded fluorescence resonance energy transfer-based biosensors have made possible real-time imaging of spatial and temporal gradients of intracellular cAMP concentration in single living cells. Here, we used confocal microscopy, fluorescence resonance energy transfer, and insulin-secreting MIN6 cells expressing Epac1-camps, a biosynthetic unimolecular cAMP indicator, to better understand the role of intracellular Ca2+ in cAMP production. We report that depolarization with high external K+, tolbutamide, or glucose caused a rapid increase in cAMP that was dependent on extracellular Ca2+ and inhibited by nitrendipine, a Ca2+ channel blocker, or 2',5'-dideoxyadenosine, a P-site antagonist of transmembrane adenylate cyclases. Stimulation of MIN6 cells with glucose in the presence of tetraethylammonium chloride generated concomitant Ca2+ and cAMP oscillations that were abolished in the absence of extracellular Ca2+ and blocked by 2',5'-dideoxyadenosine or 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase. Simultaneous measurements of Ca2+ and cAMP concentrations with Fura-2 and Epac1-camps, respectively, revealed a close temporal and causal interrelationship between the increases in cytoplasmic Ca2+ and cAMP levels following membrane depolarization. These findings indicate highly coordinated interplay between Ca2+ and cAMP signaling in electrically excitable endocrine cells and suggest that Ca2+-dependent cAMP oscillations are derived from an increase in adenylate cyclase activity and periodic activation and inactivation of cAMP-hydrolyzing phosphodiesterase.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center