Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9714-9. Epub 2005 Jun 24.

Drug resistance in cancer: principles of emergence and prevention.

Author information

  • 1Department of Mathematics, 103 MSTB, University of California, Irvine, CA 92697, USA. komarova@math.uci.edu

Abstract

Although targeted therapy is yielding promising results in the treatment of specific cancers, drug resistance poses a problem. We develop a mathematical framework that can be used to study the principles underlying the emergence and prevention of resistance in cancers treated with targeted small-molecule drugs. We consider a stochastic dynamical system based on measurable parameters, such as the turnover rate of tumor cells and the rate at which resistant mutants are generated. We find that resistance arises mainly before the start of treatment and, for cancers with high turnover rates, combination therapy is less likely to yield an advantage over single-drug therapy. We apply the mathematical framework to chronic myeloid leukemia. Early-stage chronic myeloid leukemia was the first case to be treated successfully with a targeted drug, imatinib (Novartis, Basel). This drug specifically inhibits the BCR-ABL oncogene, which is required for progression. Although drug resistance prevents successful treatment at later stages of the disease, our calculations suggest that, within the model assumptions, a combination of three targeted drugs with different specificities might overcome the problem of resistance.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk