Send to

Choose Destination
See comment in PubMed Commons below
Life Sci. 2005 Aug 19;77(14):1584-604.

Anandamide transport: a critical review.

Author information

Medical Department, Brookhaven National Laboratory, Upton, New York 11973, United States.


Anandamide (AEA) uptake has been described over the last decade to occur by facilitated diffusion, but a protein has yet to be isolated. In some cell types, it has recently been suggested that AEA, an uncharged hydrophobic molecule, passively diffuses through the plasma membrane in a process that is not protein-mediated. Since that observation, recent kinetics studies (using varying assay conditions) have both supported and denied the presence of an AEA transporter. In this review, we analyze the current literature exploring the mechanism of AEA uptake and endeavor to explain the reasons for the divergent views. One of the main variables among laboratories is the incubation time of the cells with AEA. Initial kinetics (at time points <1 min depending upon the cell type) isolate events that occur at the plasma membrane and are most useful to study saturability of uptake and effects of purported transport inhibitors upon uptake. Results with longer incubation times reflect events not only at the plasma membrane but also interactions at intracellular sites that may include enzyme(s), other proteins, or specialized lipid-binding domains. Furthermore, at long incubation times, antagonists to AEA receptors reduce AEA uptake. Another complicating factor in AEA transport studies is the nonspecific binding to plastic culture dishes. The magnitude of this effect may exceed AEA uptake into cells. Likewise, AEA may be released from plastic culture dishes (without cells) in such a manner as to mimic efflux from cells. AEA transport protocols using BSA, similar to the method used for fatty acid uptake studies, are gaining acceptance. This may improve AEA solution stability and minimize binding to plastic, although some groups report that BSA interferes with uptake. In response to criticisms that many transport inhibitors also inhibit the fatty acid amide hydrolase (FAAH), new compounds have recently been synthesized. Following their characterization in FAAH+/+ and FAAH-/- cells and transgenic mice, several inhibitors have been shown to have physiological activity in FAAH-/- mice. Their targets are now being characterized with the possibility that a protein transporter for AEA may be characterized.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center