Format

Send to

Choose Destination
Exp Eye Res. 2005 Dec;81(6):647-54. Epub 2005 Jun 21.

Advanced glycation end products induce death of retinal neurons via activation of nitric oxide synthase.

Author information

1
Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan.

Abstract

The purpose of this study was to determine whether advanced glycation end products (AGEs) are neurotoxic for cultured retinal neurons consisting mainly of amacrine cells, and to determine whether endogenous nitric oxide (NO) is involved in the toxicity. Cultured retinal neurons obtained from fetal Wistar rats (gestational age 19 days) were maintained in culture for 10 days, and then exposed to different concentrations of AGEs (0.02, 0.1, and 0.5 mg ml(-1)) in cultured media for different lengths of time. Both trypan blue exclusion and TUNEL assay were used to determine whether AGEs were neurotoxic, and NG-nitro-L-arginine methyl ester (L-NAME, 500 microM), a nitric oxide synthase (NOS) inhibitor, was used to determine whether NO was involved. Immunohistochemical analyses were performed to determine whether specific receptors of AGEs (RAGE) are present on cultured retinal neurons; caspase-3 was activated, and 3-nitrotyrosine was expressed on neurons treated with AGEs. Nitrite levels were measured in the supernatants of the media where neurons were incubated with AGEs. AGEs induced cell death in a time- and dose-dependent manner. TUNEL-positive cells and immunoreactivity to cleaved caspase-3 were enhanced on neurons following exposure to AGEs. L-NAME significantly suppressed the AGEs-induced neurotoxicity as assessed by both trypan blue exclusion and TUNEL assays. Activation of NOS was suggested by enhanced immunoreactivity to 3-nitrotyrosine on neurons and increased nitrite levels in the media incubated with AGEs. These results indicate that AGEs are neurotoxic to retinal neurons in culture through the activation of NOS. Apoptotic pathways may be in part involved in the death of the neurons.

PMID:
15975578
DOI:
10.1016/j.exer.2005.04.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center