Format

Send to

Choose Destination
Parkinsonism Relat Disord. 2005 Aug;11(5):277-86.

Neurochemical characterization of dopaminergic neurons in human striatum.

Author information

1
Laboratoire de Neurobiologie Systémique, Centre de Recherche Université Laval Robert-Giffard, 2601, de la Canardière, Local F-6500, Beauport, Que., Canada G1J 2G3.

Abstract

We examined the neurochemical phenotype of striatal neurons expressing tyrosine hydroxylase (TH) mRNA to determine if they form a distinct class of neurons within the human striatum. Double in situ hybridization (ISH) and immunohistochemical (IHC) procedures were used to know if TH mRNA-positive striatal neurons express molecular markers of mature neurons (MAP2 and NeuN), dopaminergic neurons (DAT and Nurr1) or immature neurons (TuJ1). All TH mRNA-labeled neurons were found to express NeuN, DAT and Nurr1, whereas about 80% of them exhibited MAP2, confirming their neuronal and dopaminergic nature. Only about 30% of TH mRNA-labeled neurons expressed TuJ1, suggesting that this ectopic dopaminergic neuronal population is principally composed of mature neurons. The same double ISH/IHC approach was then used to know if these dopamine neurons display markers of well-established classes of striatal projection neurons (GAD65 and calbindin) or local circuit neurons (GAD65, calretinin, somatostatin and parvalbumin). Virtually all TH-labeled neurons expressed GAD65 mRNA, about 30% of them exhibited calretinin, but none stained for the other striatal neuron markers. These results suggest that the majority of TH-positive neurons intrinsic to the human striatum belong to a distinct subpopulation of striatal interneurons characterized by their ability to produce dopamine and GABA.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center