Format

Send to

Choose Destination
See comment in PubMed Commons below
Reprod Biomed Online. 2005 Jun;10(6):755-66.

Human embryonic stem cell methyl cycle enzyme expression: modelling epigenetic programming in assisted reproduction?

Author information

  • 1Division of Obstetrics and Gynaecology, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.

Abstract

To investigate a possible mechanism for inducing epigenetic defects in the preimplantation embryo, a human embryonic stem cell model was developed, and gene expression of the key methyl cycle enzymes, MAT2A, MAT2B, GNMT, SAHH, CBS, CGL, MTR, MTRR, BHMT, BHMT2, mSHMT, cSHMT and MTHFR was demonstrated, while MAT1 was barely detectable. Several potential acceptors of cycle-generated methyl groups, the DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L), glycine methyltransferase and the polyamine biosynthetic enzymes, SAM decarboxylase and ornithine decarboxylase, were also expressed. Expression of folate receptor alpha suggests a propensity for folate metabolism. Methotrexate-induced depletion of folate resulted in elevated intracellular homocysteine concentration after 7 days in culture and a concomitant increase in cysteine and glutathione, indicating clearance of homocysteine through the transulphuration pathway. These studies indicate that altered methyl group metabolism provides a potential mechanism for inducing epigenetic changes in the preimplantation embryo.

PMID:
15970006
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center