Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurosci Lett. 2005 Sep 2;385(1):70-5.

Dynamics of neurogenesis in the dentate gyrus of adult rats.

Author information

1
Department of Physiology, Room 3214, Medical Sciences Building 1, King's College Circle, University of Toronto, Toronto, ON, Canada M5S 1A8.

Abstract

Hippocampal neurogenesis declines steadily over the first year of life in the rodent, but the process persists into senescence despite a dramatic drop in the number of neurons it produces. At this point though, the survival and development patterns exhibited by new granule cells in the aging brain remain unclear in relation to patterns observed in the younger brain. The present study was carried out in order to obtain a direct quantitative comparison of hippocampal neurogenesis in juvenile and middle-aged rats with a high degree of temporal resolution, and to compare the survival and differentiation of the new cells over time. Thirty-eight-day-old and 12-month-old, male Sprague--Dawley rats were injected with 5-bromo-2'-deoxyuridine (BrdU) in order to label cells dividing in the dentate gyrus over a 24-h period, and immunohistochemical labeling was performed in order to record cell production and survival at eight different time points over the following two-month period. Using a marker of neuronally committed precursors and immature neurons (doublecortin; DCX), as well as a marker of mature neurons (calbindin d-28K; CaBP), the extent and timeline of neuronal differentiation, maturation, and migration of the new cells were also characterized. Results indicated that 12-month-old rats experienced a nearly 94% reduction in neurogenesis relative to juveniles, due almost entirely to a 92% drop in cell production. A largely preserved course of development and migration in the remaining newborn cells suggests treatments that enhance cell proliferation could be crucial in reversing the age-related decline in neurogenesis.

PMID:
15967575
DOI:
10.1016/j.neulet.2005.05.022
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center