Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomed Tech (Berl). 2005 May;50(5):137-42.

The critical size bony defect in a small animal for bone healing studies (II): implant evolution and surgical technique on a rat's femur.

Author information

1
Department of Orthopaedics, Heinrich-Heine University Hospital Duesseldorf, Moorenstr. 5, D-40225 Duesseldorf, Germany. Jaeger@med.uni-duesseldorf.de

Abstract

In the preclinical field of orthopaedic and trauma surgery critical size bony defects (CDS) were used to evaluate the biocompatibility and allow to investigate the osteoinductivity and -conductivity of bone substitutes. Concerning the anatomical size the laboratory rat indicates a lower limit in small animals which are appropriate for experiments on bone. The aim of this study was to define a CSD, to develop a suitable fixation system to stabilize bony fragments in CSD and to point out the specialities of the surgical technique. These informations should help for to design and practice studies concerning bone healing on rat's femur. Based on previously acquired anatomical data of rat's femur, the technical challenges and anatomical specialities of different osteosynthesis techniques in rat's femur surgery are demonstrated. Our experiences with different fixation systems and techniques lead to the development of an external fixator, which guarantees for a stable bone fragment fixation, prevents severe soft tissue damage, allows of a roentgenologic evaluation of the defect zone and prevents from undesired direct biomaterial-implant interactions. Neither the proximal nor the distal femoral nailing technique is appropriate for a stable fixation in CSD of rat's femur. To evaluate the reliability of an own developed external fixator 42 nude rats with a 4.0 mm CSD were investigated clinically and roentgenologically over 10 weeks. The external fixator showed only a small implant failure rate. A solid fusion of the bone fragments was not observed within the 10 weeks follow-up period.

PMID:
15966618
DOI:
10.1515/BMT.2005.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for iFactory
    Loading ...
    Support Center