Send to

Choose Destination
Curr Biol. 2005 Jun 21;15(12):1150-5.

Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p.

Author information

Department of Microbiology, Columbia University, New York, NY 10032, USA.


The impact of many microorganisms on their environment depends upon their ability to form surface bound communities called biofilms [1]. Biofilm formation on implanted medical devices has severe consequences for human health by providing both a portal of entry and a sanctuary for invasive bacterial and fungal pathogens [1 and 2]. Biofilm regulators and adherence molecules are extensively defined for many bacterial pathogens [3, 4, and 5], but not for fungal pathogens such as Candida albicans. Elongated filaments called hyphae are a prominent feature of C. albicans biofilms, and known genes that promote biofilm formation are required for hyphal development [2, 6, 7 and 8]. From a new library of transcription-factor mutants, we identify Bcr1p, a zinc finger protein required for formation of biofilms but not hyphae. Expression analysis shows that Bcr1p activates cell-surface protein and adhesin genes, including several induced during hyphal development. BCR1 expression depends upon the hyphal regulator Tec1p. Thus, BCR1 is a downstream component of the hyphal regulatory network that couples expression of cell-surface genes to hyphal differentiation. Our results indicate that hyphal cells are specialized to present adherence molecules that support biofilm integrity.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center