Format

Send to

Choose Destination
See comment in PubMed Commons below
J Infect Dis. 2005 Jul 15;192(2):218-25. Epub 2005 Jun 7.

Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes.

Author information

1
Biochimie et Biophysique des Systèmes Intégrés, CEA-Grenoble, UMR5092 CNRS, Grenoble, France.

Abstract

Pathogenic Yersinia species and Pseudomonas aeruginosa share a similar type III secretion/translocation system. The translocation system consists of 3 secreted proteins, YopB/PopB, YopD/PopD, and LcrV/PcrV; the latter is known to be a protective antigen. In an in vitro assay, the translocation system causes the lysis of erythrocytes infected with wild-type (wt) P. aeruginosa. wt Y. enterocolitica is not hemolytic, but a multiknockout mutant deprived of all the effectors and of YopN ( Delta HOPEMN) is hemolytic. In the presence of antibodies against PcrV and Y. pestis LcrV, the hemolytic activity of P. aeruginosa was inhibited. Similarly, the hemolytic activity of Delta HOPEMN was inhibited in the presence of anti-LcrV antibodies. The assembly of the translocon, composed of PopB/D and YopB/D proteins, was disturbed in immunoprotected erythrocyte membranes, mimicking the phenotypes of V knockout mutants. Thus, protective antibodies against the V antigens of Yersinia species and P. aeruginosa act at the level of the formation of the translocon pore in membranes of infected host cells by blocking the function of LcrV/PcrV. The hemolysis assay could be adapted for high-throughput screening of anti-infectious compounds that specifically target the type III translocon.

PMID:
15962216
DOI:
10.1086/430932
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center