Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2005 Jul;79(13):8032-45.

Investigation by atomic force microscopy of the structure of Ty3 retrotransposon particles.

Author information

1
Department of Molecular Biology, University of California, Irvine, California 92697-1700, USA.

Abstract

Ty3, a member of the Metaviridiae family of long-terminal-repeat retrotransposons found in Saccharomyces cerevisiae, encodes homologs of retroviral Gag and Gag-Pol proteins, which, together with genomic RNA, assemble into virus-like particles (VLPs) that undergo processing and reverse transcription. The Ty3 structural proteins, capsid and nucleocapsid, contain major homology and nucleocapsid motifs similar to retrovirus capsid and nucleocapsid proteins, but Ty3 lacks a matrix-like structural domain amino terminal to capsid. Mass spectrometry analysis of Ty3 Gag3 processing products defined an acetylated Ser residue as the amino terminus of Gag3/p34, p27, and CA/p24 species and supported a model where p34 and p27 occur in phosphorylated forms. Using atomic force microscopy, VLPs were imaged from cells producing wild-type and protease and reverse transcriptase mutant Ty3. Wild-type VLPs were found to have a broad range of diameters, but the majority, if not all of the particles, exhibited arrangements of capsomeres on their surfaces which were consistent with icosahedral symmetry. Wild-type particles were in the range of 25 to 52 nm in diameter, with particles in the 42- to 52-nm diameter range consistent with T=7 symmetry. Both classes of mutant VLPs fell into a narrower range of 44 to 53 nm in diameter and appeared to be consistent with T=7 icosahedral symmetry. The smaller particles in the wild-type population likely correspond to VLPs that have progressed to reverse transcription or later stages, which do not occur in the protease and reverse transcriptase mutants. Ty3 VLPs did not undergo major external rearrangements during proteolytic maturation.

PMID:
15956549
PMCID:
PMC1143757
DOI:
10.1128/JVI.79.13.8032-8045.2005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center