Send to

Choose Destination
Biochim Biophys Acta. 2005 Jun 30;1750(2):146-53.

Conformational detours during folding of a collapsed state.

Author information

Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.


The protein S6 is a useful model to probe the role of partially folded states in the folding process. In the absence of salt, S6 folds from the denatured state D to the native state N without detectable intermediates. High concentrations of sodium sulfate induce the accumulation of a collapsed state C, which is off the direct folding route. However, the mutation VA85 enables S6 to fold from C directly to N through the transition state TS(C). According to the denaturant dependence of this reaction, TS(C) and C are equally compact, but the data are difficult to deconvolute. Therefore, I have measured the heat capacities (DeltaC(p)) for the D-->C and C-->TS(C) transitions. The DeltaC(p)-values suggest that C needs to increase its surface area in order to fold directly to N. This underlines that it is a misfolded state that can only fold by at least partial unfolding. In contrast to the C-state formed by S6 wildtype, the VA85 C-state is just as compact as the native state, and this may be a prerequisite for direct folding. Individual "gatekeeper" residues may thus play a disproportionately large role in guiding proteins through different folding pathways.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center