Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2005 May 15;39(10):3811-8.

Influence of the order of reagent addition on NDMA formation during chloramination.

Author information

  • 1Department of Chemical Engineering, Yale University, Mason Lab 313b, 9 Hillhouse Avenue, New Haven, Connecticut 06520, USA.


The formation of the potent carcinogen, N-nitrosodimethylamine (NDMA), during chlorine disinfection has caused significant concern among drinking water and wastewater recycling utilities practicing intentional or unintentional chloramination. Previous research modeled NDMA formation as arising from a reaction between monochloramine and organic nitrogen precursors, such as dimethylamine, via an unsymmetrical dimethylhydrazine (UDMH) intermediate. Contrary to the importance of monochloramine indicated by previous studies, hypochlorite formed an order of magnitude more NDMA than monochloramine when applied to a secondary municipal wastewater effluent containing excess ammonia. Experiments involving variation of the order that each reagent (i.e., hypochlorite, ammonium chloride, and dimethylamine) was added to solution suggest two factors that may be more important for NDMA formation than the presence of monochloramine: (i) the chlorination state of organic nitrogen precursors and (ii) the partial formation of dichloramine. Although dichloramine formation was most influenced by the pH conditions under which inorganic chloramine formation was performed, mixing effects related to the order of reagent addition may be important at full-scale plants. Chloramination strategies are suggested that may reduce NDMA formation by nearly an order of magnitude.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk