Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Hum Genet. 2005 Aug;77(2):305-12. Epub 2005 Jun 10.

Dysregulation of chondrogenesis in human cleidocranial dysplasia.

Author information

1
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

Abstract

Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia caused by heterozygosity of mutations in human RUNX2. The disorder is characterized by delayed closure of the fontanel and hypoplastic clavicles that result from defective intramembranous ossification. However, additional features, such as short stature and cone epiphyses, also suggest an underlying defect in endochondral ossification. Here, we report observations of growth-plate abnormalities in a patient with a novel RUNX2 gene mutation, a single C insertion (1228insC), which is predicted to lead to a premature termination codon and thus to haploinsufficiency of RUNX2 and the CCD phenotype. Histological analysis of the rib and long-bone cartilages showed a markedly diminished zone of hypertrophy. Quantitative real-time reverse transcription-polymerase chain reaction analysis of limb cartilage RNA showed a 5-10-fold decrease in the hypertrophic chondrocyte molecular markers VEGF, MMP13, and COL10A1. Together, these data show that humans with CCD have altered endochondral ossification due to altered RUNX2 regulation of hypertrophic chondrocyte-specific genes during chondrocyte maturation.

PMID:
15952089
PMCID:
PMC1224532
DOI:
10.1086/432261
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center