Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Mol Brain Res. 2005 Aug 18;138(2):145-55.

Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder.

Author information

1
The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia. bdean_mhri@iprimus.com.au

Abstract

Postmortem CNS studies have suggested an uncoupling of the gamma-aminobutyric acid (GABA) and benzodiazepine binding sites on the hippocampal GABA(A) receptor in schizophrenia. The GABA(A) receptor is an assembly of discrete subunits that form a ligand-gated ion channel, the binding characteristics of which are defined by receptor subunit composition. Thus, a likely explanation for an uncoupling between the GABA and benzodiazepine binding sites on the GABA(A) receptor would be a change in receptor subunit composition. To test this hypothesis we measured the density of GABA ([(3)H]muscimol) and benzodiazepine ([(3)H]flumazenil) binding sites on the GABA(A) receptor in hippocampi, obtained postmortem, from schizophrenic, bipolar I disorder and control subjects. In addition, we measured the amount of [(3)H]flumazenil binding that could be displaced with zolpidem and clonazepam. Levels of both [(3)H]muscimol and [(3)H]flumazenil binding were significantly decreased in part of the CA2 from subjects with schizophrenia; the decrease in [(3)H]flumazenil being due to decreases in both zolpidem-sensitive and -insensitive radioligand binding. There were complex regionally specific changes in [(3)H]muscimol binding in the hippocampus from subjects with bipolar I disorder but there were no significant changes in the overall levels of [(3)H]flumazenil binding. There were significant decreases in zolpidem-sensitive and increases in zolpidem-insensitive [(3)H]flumazenil binding in most regions of the sections of the hippocampal formation studied in bipolar I disorder. Unlike [(3)H]flumazenil, zolpidem does not bind to the alpha5 subunit of the GABA(A) receptor; therefore, we postulate that there is an increase in GABA(A) receptors containing alpha5 subunit in the hippocampus from subjects with bipolar I disorder.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center