Send to

Choose Destination
See comment in PubMed Commons below
Pharm Res. 2005 Jun;22(6):951-61. Epub 2005 Jun 8.

Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies.

Author information

Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.



To develop safe and effective systemically administered nonviral gene therapy vectors for solid tumors, DNA-containing poly(ethylene glycol)-modified (PEGylated) gelatin nanoparticles were fabricated and evaluated in vitro and in vivo.


Reporter plasmid DNA encoding for beta-galactosidase (pCMV-beta) was encapsulated in gelatin and PEGylated gelatin nanoparticles using a water-ethanol solvent displacement method under controlled pH and temperature. Lewis lung carcinoma (LLC) cells in culture were transfected with the pCMV-beta in the control and nanoparticle formulations. Periodically, the expression of beta-galactosidase in the cells was measured quantitatively using an enzymatic assay for the conversion of o-nitrophenyl-beta-D: -galactopyranoside (ONPG) to o-nitrophenol (ONP). Qualitative expression of beta-galactosidase in LLC cells was observed by staining with 5-bromo-4-chloro-3-indolyl-beta-D: -galactopyranoside (X-gal). Additionally, the plasmid DNA-encapsulated gelatin and PEGylated gelatin nanoparticles were administered intravenously (i.v.) and intratumorally (i.t.) to LLC-bearing female C57BL/6J mice. At various time points postadministration, the animals were sacrificed and transgene expression in the tumor and liver was determined quantitatively by the ONPG to ONP enzymatic conversion assay and qualitatively by X-gal staining.


Almost 100% of the pCMV-beta was encapsulated in gelatin and PEGylated gelatin nanoparticles (mean diameter 200 nm) at 0.5% (w/w) concentration. PEGylated gelatin nanoparticles efficiently transfected the LLC cells and the beta-galactosidase expression, as measured by the ONPG to ONP enzymatic conversion assay at 420 nm absorbance, increased starting from 12 h until 96 h post-transfection. The efficient expression of LLC cells was also evident by the X-gal staining method that shows blue color formation. The in vivo studies showed significant expression of beta-galactosidase in the tumor following administration of DNA-containing PEGylated gelatin nanoparticles to LLC-bearing mice by both i.v. and i.t. routes. Following i.v. administration of pCMV-beta in PEGylated gelatin nanoparticles, for instance, the absorbance at 420 nm per gram of tumor increased from 0.60 after 12 h to 0.85 after 96 h of transfection. After i.t. administration, the absorbance values increased from 0.90 after 12 h to almost 1.4 after 96 h.


The in vitro and in vivo results of this study clearly show that a long-circulating, biocompatible and biodegradable, DNA-encapsulating nanoparticulate system would be highly desirable for systemic delivery of genetic constructs to solid tumors.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center