Format

Send to

Choose Destination
IEEE Trans Neural Netw. 2005 May;16(3):557-64.

Enhanced FMAM based on empirical kernel map.

Author information

1
Department of Computer Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. wm_wangmin@yahoo.com.cn

Abstract

The existing morphological auto-associative memory models based on the morphological operations, typically including morphological auto-associative memories (auto-MAM) proposed by Ritter et al. and our fuzzy morphological auto-associative memories (auto-FMAM), have many attractive advantages such as unlimited storage capacity, one-shot recall speed and good noise-tolerance to single erosive or dilative noise. However, they suffer from the extreme vulnerability to noise of mixing erosion and dilation, resulting in great degradation on recall performance. To overcome this shortcoming, we focus on FMAM and propose an enhanced FMAM (EFMAM) based on the empirical kernel map. Although it is simple, EFMAM can significantly improve the auto-FMAM with respect to the recognition accuracy under hybrid-noise and computational effort. Experiments conducted on the thumbnail-sized faces (28 x 23 and 14 x 11) scaled from the ORL database show the average accuracies of 92%, 90%, and 88% with 40 classes under 10%, 20%, and 30% randomly generated hybrid-noises, respectively, which are far higher than the auto-FMAM (67%, 46%, 31%) under the same noise levels.

PMID:
15940986
DOI:
10.1109/TNN.2005.847839
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center