Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2005 Aug 15;567(Pt 1):253-65. Epub 2005 Jun 2.

Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon.

Author information

1
Zentrum Physiologie 4220, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany. gros.gerolf@mh-hannover.de

Abstract

We have investigated the apical membrane permeability for CO2 of intact epithelia of proximal and distal colon of the guinea pig. The method used was the mass spectrometric 18O-exchange technique previously described. In a first step, we determined the intraepithelial carbonic anhydrase (CA) activity by studying vital isolated colonocytes before and after lysis with Triton X-100. Intraepithelial CA activity was found to be 41,000 and 900 for proximal and distal colon, respectively. Then 18O-exchange measurements were done with stripped intact epithelial layers, which on their apical side were exposed to the reaction solution containing 18O-labelled CO2 and HCO3-. The mass spectrometric signals in these measurements are determined by the intracellular epithelial CA activity, and by the apical membrane permeabilities for CO2 and HCO3-, P(CO2) and P(HCO3). From the signals, we calculated the two permeabilities while inserting the CA activities obtained from isolated colonocytes. From layers of intact colon epithelium, the apical P(CO2) was determined to be 1.5 x 10(-3) cm s(-1) for proximal and 0.77 x 10(-3) cm s(-1) for distal colon. These values are > or =200 times lower than the P(CO2) of the human red cell membrane as studied with the same technique (0.3 cm s(-1)). We conclude that the apical membrane offers a significant resistance towards CO2 diffusion, which implies that a major drop in CO2 partial pressure (pCO2) will occur across the apical membrane when luminal pCO2 is higher than basolateral or capillary pCO2. In view of the very high pCO2 that can occur in the colonic lumen, this property of the apical membrane constitutes a significant protection of the cell against the high acid load associated with high pCO2.

PMID:
15932894
PMCID:
PMC1474176
DOI:
10.1113/jphysiol.2005.085761
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center