Send to

Choose Destination
See comment in PubMed Commons below
Biol Chem. 2005 May;386(5):453-61.

Adrenodoxin (Adx) and CYP11A1 (P450scc) induce apoptosis by the generation of reactive oxygen species in mitochondria.

Author information

  • 1Department of Biochemistry, Building No. 9.2, Saarland University, D-66041 Saarbrücken, Germany.


Mitochondrial cytochrome P450 systems are an indispensable component of mammalian steroid biosynthesis; they catalyze regio- and stereo-specific steroid hydroxylations and consist of three protein entities: adrenodoxin reductase (AdR), adrenodoxin (Adx), and a mitochondrial cytochrome P450 enzyme, e.g., CYP11A1 (P450 side chain cleavage, P450scc). It is known that the latter two are able to generate reactive oxygen species (ROS) in vitro . In this study, we investigated whether this ROS generation also occurs in vivo and, if so, whether it leads to the induction of apoptosis. We found that overexpression of either human or bovine Adx causes a significant loss of viability in 11 different cell lines. This loss of viability does not depend on the presence of the tumor suppressor protein p53. Transient overexpression of human Adx in HCT116 cells leads to ROS production, to a disruption of the mitochondrial transmembrane potential (DeltaPsi), to cytochrome c release from the mitochondria, and to caspase activation. In contrast, the effect of transient overexpression of human CYP11A1 on cell viability varies in different cell lines, with some being sensitive and others not. We conclude that mitochondrial cytochrome P450 systems are a source of mitochondrial ROS production and can play a role in the induction of mitochondrial apoptosis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for iFactory
    Loading ...
    Support Center