Format

Send to

Choose Destination
Eur J Neurosci. 2005 May;21(10):2649-59.

Fucoidan inhibits cellular and neurotoxic effects of beta-amyloid (A beta) in rat cholinergic basal forebrain neurons.

Author information

1
Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada. jack.jhamandas@ualberta.ca

Abstract

The deposition of beta-amyloid protein (A beta), a 39-43 amino acid peptide, in the brain and a loss of cholinergic neurons in the basal forebrain are pathological hallmarks of Alzheimer's disease (AD). Seaweeds consumed in Asia contain Fucoidan, a sulfated polysaccharide. Fucoidan has been known to exhibit various biological actions, such as an anti-inflammatory and antioxidant action. In this study, using whole-cell patch clamp recordings we examined the effects of Fucoidan on A beta-induced whole-cell currents in acutely dissociated rat basal forebrain neurons. We further investigated whether Fucoidan is capable of blocking A beta neurotoxicity in primary neuronal cultures. In dissociated cells, bath application of A beta(25-35) (1 microM) caused a reduction of the whole-cell currents by 16%. Fucoidan, in a dose-dependent manner, blocks the A beta(25-35) reduction of whole-cell currents. Exposure of A beta(25-35) (20 microM) or A beta(1-42) (20 microM) to rat cholinergic basal forebrain cultures for 48 h resulted in 40-60% neuronal death, which was significantly decreased by pretreatment of cultures with Fucoidan (0.1-1.0 microM). Fucoidan also attenuated A beta-induced down-regulation of phosphorylated protein kinase C. A beta(1-42)-induced generation of reactive oxygen species was blocked by prior exposure of cultures to Fucoidan. Furthermore, A beta activation of caspases 9 and 3, which are signaling pathways implicated in apoptotic cell death, is blocked by pretreatment of cultures with Fucoidan. These results show that Fucoidan is able to block A beta-induced reduction in whole-cell currents in basal forebrain neurons and has neuroprotective effects against A beta-induced neurotoxicity in basal forebrain neuronal cultures.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center