Format

Send to

Choose Destination
Free Radic Biol Med. 2005 Jul 1;39(1):81-90. Epub 2005 Apr 8.

Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion.

Author information

1
Department of Health Risk Analysis and Toxicology, University of Maastricht, The Netherlands.

Abstract

In ischemia/reperfusion (I/R) injury increased intracellular Ca(2+) and production of reactive oxygen species (ROS) may cause cell death by intrinsic apoptotic pathways or by necrosis. In this review, an alternative intrinsic cell death pathway, mediated by poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF), is described. ROS-induced DNA strand breaks lead to overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30), causing excessive use of energetic substrates such as NAD(+) and ATP, inducing cell death either by apoptosis or by necrosis. Recently, it was demonstrated that activation of PARP-1 induces translocation of apoptosis-inducing factor from the mitochondria to the nucleus, causing DNA condensation and fragmentation, and subsequent cell death. This pathway seems to be triggered by depletion of NAD(+) and appears to be caspase independent. Several lines of evidence suggest that this pathway plays a role in I/R injury, although some studies indicate that mitochondrial dysfunction may also trigger AIF translocation and cell death. At present, the exact mechanisms linking PARP-1 and AIF in the induction of the ROS-induced cell death are still unclear. Therefore, it appears that further investigations will yield valuable information on underlying mechanisms and potential interventions to reduce caspase-independent cell death during ischemia-reperfusion.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center