Send to

Choose Destination
J Biol Chem. 2005 Jul 22;280(29):26922-7. Epub 2005 May 27.

Regulation of the P2X7 receptor permeability to large molecules by extracellular Cl- and Na+.

Author information

Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA.


Upon continuous stimulation, the pore of the monovalent cation-selective P2X7 receptor (P2X7R) expands to accommodate large molecules such as N-methyl-D-glucamine (NMDG+). How the change in P2X7R permeability is regulated is not known. Here we report that extracellular Cl- (Cl-(o)) regulates the outward current, whereas extracellular Na+ (Na+(o)) regulates the inward current of large molecules by P2X7Rs. The P2X7R-mediated current was measured in parotid acinar and duct cells of wild type and P2X7R-/- mice and in HEK293 cells expressing the human or mouse P2X7R isoforms. In symmetrical NaCl, triethylammonium chloride, and NMDG+ chloride solutions, the P2X7R current followed a linear current/voltage relationship. In symmetrical NaCl, removal of Cl-(o) reduced the inward Na+ current by approximately 35% and the outward Na+ current by only 10%. By contrast, in the absence of Na+(i) and the presence of Na+(o) or NMDG+(o), the removal of Cl-(o) reduced the inward Na+ or NMDG+ currents by 35% but the outward NMDG+ current by >95%. The effect of Cl-(o) was half-maximal at approximately 60 mm. Reducing Cl-(i) from 150 to 10 mm did not reproduce the effects of Cl-(o). All currents were eliminated in P2X7R-/- cells and reproduced by expressing the P2X7Rs in HEK cells. These findings suggest that Cl-(o) primarily regulates the outward P2X7R current of large molecules. When cells dialyzed with NMDG+ were stimulated in the presence of Na+(o), subsequent removal of Na+(o) resulted in a strongly outward rectifying NMDG+ current, indicating maintained high selectivity for Na+ over NMDG+. During continuous incubation in Na+-free medium, the permeability of the P2X7Rs to NMDG+ gradually increased. On the other hand, when the cells were incubated in symmetrical NMDG+ and only then stimulated with ATP, the NMDG+ current by P2X7Rs followed a linear current/voltage relationship and did not change with time. These findings suggest that the P2X7R has a "Na+(o) memory" and that Na+(o) regulates the inward permeability of P2X7Rs to large molecules. The novel regulation of P2X7R outward and inward permeability to large molecules by Cl-(o) and Na+(o), respectively, may have an important protective function, particularly in secretory epithelial cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center