Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2005 Jun;166(6):1841-50.

Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma.

Author information

1
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

Abstract

Dynamic instability of microtubules is critical for mitotic spindle assembly and disassembly during cell division, especially in rapidly dividing tumor cells. Microtubule-associated proteins (MAPs) are a family of proteins that influence this property. We showed previously that MAP2, a neuron-specific protein that stabilizes microtubules in the dendrites of postmitotic neurons, is induced in primary cutaneous melanoma but is absent in metastatic melanomas. We proposed that induction of a microtubule-stabilizing protein in primary melanoma could disrupt the dynamic instability of microtubules, inhibit cell division and prevent or delay tumor progression. Here we show, by Kaplan-Meier survival and multivariate Cox regression analysis, that patients diagnosed with MAP2+ primary melanomas have significantly better metastatic disease-free survival than those with MAP2- disease. Investigation of the mechanisms that underlie the effect of MAP2 on melanoma progression showed that MAP2 expression in metastatic melanoma cell lines leads to microtubule stabilization, cell cycle arrest in G2-M phase and growth inhibition. Disruption of microtubule dynamics by MAP2 resulted in multipolar mitotic spindles, defects in cytokinesis and accumulation of cells with large nuclei, similar to those seen in vivo in MAP2+ primary melanomas cells. These data suggest that ectopic activation of a neuronal differentiation gene in melanoma during early tumor progression inhibits cell division and correlates with inhibition or delay of metastasis.

PMID:
15920168
PMCID:
PMC1602405
DOI:
10.1016/S0002-9440(10)62493-5
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center