Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2005 May 27;18(5):601-7.

HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor.

Author information

  • 1Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.

Abstract

The molecular chaperone heat shock protein 90 (Hsp90) and its accessory cochaperones function by facilitating the structural maturation and complex assembly of client proteins, including steroid hormone receptors and selected kinases. By promoting the activity and stability of these signaling proteins, Hsp90 has emerged as a critical modulator in cell signaling. Here, we present evidence that Hsp90 chaperone activity is regulated by reversible acetylation and controlled by the deacetylase HDAC6. We show that HDAC6 functions as an Hsp90 deacetylase. Inactivation of HDAC6 leads to Hsp90 hyperacetylation, its dissociation from an essential cochaperone, p23, and a loss of chaperone activity. In HDAC6-deficient cells, Hsp90-dependent maturation of the glucocorticoid receptor (GR) is compromised, resulting in GR defective in ligand binding, nuclear translocation, and transcriptional activation. Our results identify Hsp90 as a target of HDAC6 and suggest reversible acetylation as a unique mechanism that regulates Hsp90 chaperone complex activity.

PMID:
15916966
DOI:
10.1016/j.molcel.2005.04.021
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center