Format

Send to

Choose Destination
Dev Biol. 2005 Jul 15;283(2):373-83.

Differential roles of p39Mos-Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes.

Author information

1
Laboratoire de Biologie du Développement, UPRES EA 1033, Université des Sciences et Technologies de Lille, SN3, Villeneuve d'Ascq, France. Jean-Francois.bodart@univ-lille1.fr

Abstract

Fully-grown G2-arrested Xenopus oocytes resume meiosis upon hormonal stimulation. Resumption of meiosis is characterized by germinal vesicle breakdown, chromosome condensation, and organization of a bipolar spindle. These cytological events are accompanied by activation of MPF and the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathways. The latter cascade is activated upon p39(Mos) accumulation. Using U0126, a MEK1 inhibitor, and p39(Mos) antisense morpholino and phosphorothioate oligonucleotides, we have investigated the role of the members of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) in spindle morphogenesis. First, we have observed at a molecular level that prevention of p39(Mos) accumulation always led to MEK1 phosphorylation defects, even when meiosis was stimulated through the insulin Ras-dependent pathway. Moreover, we have observed that Raf1 phosphorylation that occurs during meiosis resumption was dependent upon the activity of MEK1 or Xp42(Mpk1) but not p90(Rsk). Second, inhibition of either p39(Mos) accumulation or MEK1 inhibition led to the formation of a cytoplasmic aster-like structure that was associated with condensed chromosomes. Spindle morphogenesis rescue experiments using constitutively active Rsk and purified murine Mos protein suggested that p39(Mos) or p90(Rsk) alone failed to promote meiotic spindle organization. Our results indicate that activation of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathway is required for bipolar organization of the meiotic spindle at the cortex.

PMID:
15913594
DOI:
10.1016/j.ydbio.2005.04.031
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center