Send to

Choose Destination
J Struct Funct Genomics. 2005;6(1):33-50.

High-throughput production of prokaryotic membrane proteins.

Author information

Ontario Center for Structural Proteomics, University of Toronto, 112 College St., Toronto, Ontario, Canada.


Membrane proteins constitute ~30% of prokaryotic and eukaryotic genomes but comprise a small fraction of the entries in protein structural databases. A number of features of membrane proteins render them challenging targets for the structural biologist, among which the most important is the difficulty in obtaining sufficient quantities of purified protein. We are exploring procedures to express and purify large numbers of prokaryotic membrane proteins. A set of 280 membrane proteins from Escherichia coli and Thermotoga maritima, a thermophile, was cloned and tested for expression in Escherichia coli. Under a set of standard conditions, expression could be detected in the membrane fraction for approximately 30% of the cloned targets. About 22 of the highest expressing membrane proteins were purified, typically in just two chromatographic steps. There was a clear correlation between the number of predicted transmembrane domains in a given target and its propensity to express and purify. Accordingly, the vast majority of successfully expressed and purified proteins had six or fewer transmembrane domains. We did not observe any clear advantage to the use of thermophilic targets. Two of the purified membrane proteins formed crystals. By comparison with protein production efforts for soluble proteins, where approximately 70% of cloned targets express and approximately 25% can be readily purified for structural studies [Christendat et al. (2000) Nat. Struct. Biol., 7, 903], our results demonstrate that a similar approach will succeed for membrane proteins, albeit with an expected higher attrition rate.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center