Send to

Choose Destination
Plasmid. 2005 Jul;54(1):70-9. Epub 2005 Jan 28.

Isolation of a low-molecular-weight, multicopy plasmid, pNHK101, from Thermus sp. TK10 and its use as an expression vector for T. thermophilus HB27.

Author information

Division of Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.


We isolated a small multicopy cryptic plasmid, pNHK101, from Thermus sp. TK10 for use as a replicon of a Thermus expression vector. The nucleotide sequence of pNHK101 revealed that this plasmid was 1564bp long, with a total G+C content of 66.8%, which was in agreement with that of Thermus genomic DNA. The sequence did not show any significant similarities to any other plasmids; also, the amino acid sequences of four putative open reading frames, found in the plasmid, did not show strong similarities to those in the databases, except the ORF1, which had very slight similarities to several replication proteins of plasmids from other bacteria. pNHK101 was able to replicate in Thermus thermophilus HB27 with copy number about 80, and was stably maintained at 60 degrees C, but became unstable at 70 degrees C. Based on pNHK101, we constructed a plasmid vector, pKMH052, containing the highly thermostable kanamycin resistance gene as a selective marker. The copy number of pKMH052 decreased to about one-fourth of that of pNHK101, but stability at 60 degrees C did not alter under non-selective conditions. pKMH052 was compatible with pTT8, and interestingly, the presence of pTT8 in the same cells improved the stability of pKMH052 at 70 degrees C. Cloning of the crtB gene of T. thermophilus HB27 encoding phytoene synthase into pKMH052, and introduction into T. thermophilus cells resulted in a 2.8-fold production of carotenoids, indicating the potential use of this plasmid for overexpression of genes from thermophiles and hyperthermophiles.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center