Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2005 Jun;25(11):4371-6.

Mouse axin and axin2/conductin proteins are functionally equivalent in vivo.

Author information

Department of Genetics and Development, Columbia University Medical Center, 701 W. 168th Street, New York, NY 10032, USA.


Axin is a central component of the canonical Wnt signal transduction machinery, serving as a scaffold for the beta-catenin destruction complex. The related protein Axin2/Conductin, although less extensively studied, is thought to perform similar functions. Loss of Axin causes early embryonic lethality, while Axin2-null mice are viable but have craniofacial defects. Mutations in either gene contribute to cancer in humans. The lack of redundancy between Axin and Axin2 could be due to their different modes of expression: while Axin is expressed ubiquitously, Axin2 is expressed in tissue- and developmental-stage-specific patterns, and its transcription is induced by canonical Wnt signaling. Alternatively, the two proteins might have partially different functions, a hypothesis supported by the observation that they differ in their subcellular localizations in colon epithelial cells. To test the functional equivalence of Axin and Axin2 in vivo, we generated knockin mice in which the Axin gene was replaced with Myc-tagged Axin or Axin2 cDNA. Mice homozygous for the resulting alleles, Axin(Ax) or Axin(Ax2), express no endogenous Axin but express either Myc-Axin or Myc-Axin2 under the control of the Axin locus. Both Axin(Ax/Ax) and Axin(Ax2/Ax2) homozygotes are apparently normal and fertile, demonstrating that the Axin and Axin2 proteins are functionally equivalent.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center