Format

Send to

Choose Destination
Exp Neurol. 2005 Jul;194(1):97-105.

Glial cell line-derived neurotrophic factor-conjugated nanoparticles suppress acquisition of cocaine self-administration in rats.

Author information

1
Neuropharmacology Laboratory, Faculty of Life Sciences and the Leslie and Susan Gonda (Goldshmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.

Abstract

The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) may have therapeutic potential for preventing and treating cocaine addiction. Previously, we found that transplantation of a GDNF-expressing astrocyte cell line into the striatum and nucleus accumbens attenuates cocaine-seeking behavior in Sprague-Dawley rats. However, as a potential treatment for humans, cell transplantation presents several technical and ethical complications. Nanoparticulate systems are a safe and effective method for introducing exogenous compounds into the brain. Therefore, we examined the effect of GDNF-conjugated nanoparticles microinjected into the striatum and nucleus accumbens on cocaine self-administration in rats. GDNF-conjugated nanoparticles blocked the acquisition of cocaine self-administration compared to control treatments. Furthermore, a cocaine dose response demonstrated that decreased lever response in rats that received GDNF-conjugated nanoparticles persisted after substitution with different cocaine doses. This effect is not due to a non-specific disruption of locomotor or operant behavior, as seen following a water operant task. The current study is one of the first demonstrations that drug-conjugated nanoparticles may be effective in treating brain disorders. These findings suggest that GDNF-conjugated nanoparticles may serve as a novel potential treatment for drug addiction.

PMID:
15899247
DOI:
10.1016/j.expneurol.2005.01.020
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center