Send to

Choose Destination
J Am Chem Soc. 2005 May 25;127(20):7632-7.

Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles.

Author information

Institute of Industrial Science, The University of Tokyo, Japan.


Plasmon-induced photoelectrochemistry in the visible region was studied at gold nanoparticle-nanoporous TiO(2) composites (Au-TiO(2)) prepared by photocatalytic deposition of gold in a porous TiO(2) film. Photoaction spectra for both the open-circuit potential and short-circuit current were in good agreement with the absorption spectrum of the gold nanoparticles in the TiO(2) film. The gold nanoparticles are photoexcited due to plasmon resonance, and charge separation is accomplished by the transfer of photoexcited electrons from the gold particle to the TiO(2) conduction band and the simultaneous transfer of compensative electrons from a donor in the solution to the gold particle. Besides its low-cost and facile preparation, a photovoltaic cell with the optimized electron mediator (Fe(2+/3+)) exhibits an optimum incident photon to current conversion efficiency (IPCE) of 26%. The Au-TiO(2) can photocatalytically oxidize ethanol and methanol at the expense of oxygen reduction under visible light; it is potentially applicable to a new class of photocatalysts and photovoltaic fuel cells.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center