Format

Send to

Choose Destination
J Med Chem. 2005 May 19;48(10):3564-75.

Further studies on the interaction of the 5-hydroxytryptamine3 (5-HT3) receptor with arylpiperazine ligands. development of a new 5-HT3 receptor ligand showing potent acetylcholinesterase inhibitory properties.

Author information

1
Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università di Siena, Via A. Moro, 53100 Siena, Italy. cappelli@unisi.it

Abstract

Novel arylpiperazine derivatives bearing lipophilic probes were designed, synthesized, and evaluated for their potential ability to interact with the 5-hydroxytryptamine(3) (5-HT(3)) receptor. Most of the new compounds show subnanomolar 5-HT(3) receptor affinity. Ester 6bc showing a picomolar K(i) value is one of the most potent 5-HT(3) receptor ligands so far synthesized. The structure-affinity relationship study suggests the existence of a certain degree of conformational freedom of the amino acid residues interacting with the substituents in positions 3 and 4 of the quipazine quinoline nucleus. Thus, the tacrine-related heterobivalent ligand 6o was designed in an attempt to capitalize on the evidence of such a steric tolerance. Compound 6o shows a nanomolar potency for both the 5-HT(3) receptor and the human AChE and represents the first example of a rationally designed high-affinity 5-HT(3) receptor ligand showing nanomolar AChE inhibitory activity. Finally, the computational analysis performed on compound 6o allowed the rationalization of the structure-energy determinants for AChE versus BuChE selectivity and revealed the existence of a subsite at the boundary of the 5-HT(3) receptor extracellular domain, which could represent a "peripheral" site similar to that evidenced in the AChE gorge.

PMID:
15887964
DOI:
10.1021/jm0493461
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center