Format

Send to

Choose Destination
Cancer Lett. 2006 Mar 28;234(2):220-31.

Bioactivation of 3-aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone: evidence for DNA adduct formation mediated by cytochrome P450 enzymes and peroxidases.

Author information

1
Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG, UK. volker.arlt@icr.ac.huk

Abstract

3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen found in diesel exhaust and ambient air pollution. The main metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), was detected in the urine of salt mining workers occupationally exposed to diesel emissions. We evaluated the role of hepatic cytochrome P450 (CYP) enzymes in the activation of 3-ABA in vivo by treating hepatic cytochrome P450 oxidoreductase (POR)-null mice and wild-type littermates intraperitoneally with 0.2 and 2mg/kg body weight of 3-ABA. Hepatic POR-null mice lack POR-mediated CYP enzyme activity in the liver. Using the (32)P-postlabelling method, multiple 3-ABA-derived DNA adducts were observed in liver DNA from wild-type mice, qualitatively similar to those formed in incubations using human hepatic microsomes. The adduct pattern was also similar to those formed by the nitroaromatic counterpart 3-NBA and which derive from reductive metabolites of 3-NBA bound to purine bases in DNA. DNA binding by 3-ABA in the livers of the null mice was undetectable at the lower dose and substantially reduced (by up to 80%), relative to wild-type mice, at the higher dose. These data indicate that POR-mediated CYP enzyme activities are important for the oxidative activation of 3-ABA in livers, confirming recent results indicating that CYP1A1 and -1A2 are mainly responsible for the metabolic activation of 3-ABA in human hepatic microsomes. No difference in DNA binding was found in kidney and bladder between null and wild-type mice, suggesting that cells in these extrahepatic organs have the metabolic capacity to oxidize 3-ABA to species forming the same 3-ABA-derived DNA adducts, independently from the CYP-mediated oxidation in the liver. We determined that different model peroxidases are able to catalyse DNA adduct formation by 3-ABA in vitro. Horseradish peroxidase (HRP), lactoperoxidase (LPO), myeloperoxidase (MPO), and prostaglandin H synthase (PHS) were all effective in activating 3-ABA in vitro, forming DNA adducts qualitatively similar to those formed in vivo in mice treated with 3-ABA and to those found in DNA reacted with N-hydroxy-3-aminobenzanthrone (N-OH-ABA). Collectively, these results suggest that both CYPs and peroxidases may play an important role in metabolizing 3-ABA to reactive DNA adduct forming species.

PMID:
15885895
DOI:
10.1016/j.canlet.2005.03.035
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center