Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2005 Jun 17;331(4):1353-7.

Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal.

Author information

  • 1Cellular Biophysics Laboratory, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA.

Abstract

The low luminal Ca2+ concentration of mammalian endolymph in the vestibular labyrinth is required for normal balance. We found transcripts in primary cultures of semicircular canal duct (SCCD) epithelial cells from neonatal rats representing a complete transport system for transepithelial absorption of Ca2+ that is comprised of the epithelial Ca2+ channels ECaC1 (CaT2, TRPV5) and ECaC2 (CaT1, TRPV6), calbindin (calbindin-D9k, calbindin-D28k), Na+/Ca2+ exchanger (NCX1, NCX2, and NCX3), and plasma membrane Ca2+-ATPase (PMCA1, PMCA3, and PMCA4) by RT-PCR. Further, vitamin D receptor was also expressed in SCCD and it was found by quantitative RT-PCR that incubation for 24 h with 1,25-dihydroxyvitamin D3 upregulated the expression of ECaC1, calbindin-D9k, and calbindin-D28k. These observations provide evidence for the first time of an ECaC-based Ca2+ transport system in SCCD that could maintain the low Ca2+ concentration in vestibular endolymph.

PMID:
15883024
DOI:
10.1016/j.bbrc.2005.04.053
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center