Send to

Choose Destination
J Morphol. 2005 Jul;265(1):87-101.

Limb chondrogenesis of the seepage salamander, Desmognathus aeneus (amphibia: plethodontidae).

Author information

University of Chicago, Department of Organismal Biology and Anatomy, Chicago, Illinois 60637, USA.


Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with larval stages (e.g., Ambystoma mexicanum). Both modes of development result in a limb that is morphologically indistinct from an amniote limb. Developmental series of A. mexicanum and D. aeneus were investigated using Type II collagen immunochemistry, Alcian Blue staining, and whole-mount TUNEL staining. In A. mexicanum, as each digit bud extends from the limb palette Type II collagen and proteoglycan secretion occur almost simultaneously with mesenchyme condensation. Conversely, collagen and proteoglycan secretion in digits of D. aeneus occur only after the formation of an amniote-like paddle. Within each species, Type II collagen expression patterns resemble those of proteoglycans. In both, distal structures form before more proximal structures. This observation is contrary to the proximodistal developmental pattern of other tetrapods and may be unique to urodeles. In support of previous findings, no cell death was observed during limb development in A. mexicanum. However, apoptotic cells that may play a role in digit ontogeny occur in the limbs of D. aeneus, thereby suggesting that programmed cell death has evolved as a developmental mechanism at least twice in tetrapod limb evolution.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center