Send to

Choose Destination
Archaea. 2005 May;1(5):303-9.

Trace methane oxidation studied in several Euryarchaeota under diverse conditions.

Author information

Department of Geosciences and Penn State Astrobiology Research Center, Penn State University, 220 Deike Bldg., University Park, PA 16802, USA.


We used (13)C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 +/- 0.04%, +/- 2 standard deviations of the methane produced during growth) was less than that by M. barkeri (0.15 +/- 0.04%), grown under similar conditions with H(2) and CO(2). Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 +/- 0.05%) than during growth on methanol (0.07 +/- 0.03%). This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O(2), NO(3) (-), SO(4) (2-), SO(3) (2-)) or H(2) to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD(+) showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H(2) concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 +/- 0.01% of the methane provided to A. fulgidus, 0.002 +/- 0.009% to A. lithotrophicus and 0.003 +/- 0.02% to A. profundus). Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in this genus, is required for the anaerobic oxidation of methane, consistent with the "reverse methanogenesis" hypothesis.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center