Format

Send to

Choose Destination
See comment in PubMed Commons below
Oecologia. 2005 Aug;144(4):585-97. Epub 2005 May 11.

Off-season uptake of nitrogen in temperate heath vegetation.

Author information

  • 1Department of Terrestrial Ecology, Institute of Biology, University of Copenhagen, Ă˜ster Farimagsgade 2D, 1353, Copenhagen K, Denmark. louisea@bi.ku.dk

Abstract

In this field study we show that temperate coastal heath vegetation has a significant off-season uptake potential for nitrogen, both in the form of ammonium and as glycine, throughout winter. We injected 15N-ammonium and 15N 2x(13C)-glycine into the soil twice during winter and once at spring. The winter temperatures were similar to those of an average winter in the northern temperate region of Europe, with only few days of soil temperatures below zero or above 5 degrees C. The vegetation, consisting of the evergreen dwarf shrub Calluna vulgaris, the deciduous dwarf shrub Salix arenaria, and the graminoids Carex arenaria and Deschampsia flexuosa, showed high root uptake of both forms of nitrogen, both 1 day after labelling and after a month, in species specific temporal patterns. Plant uptake of 13C was not significant, providing no further evidence of intact uptake of glycine. Translocation of the labelled nitrogen to shoots was generally evident after 1 month and increased as spring approached, with different translocation strategies in the three plant functional types. Furthermore, only the graminoids showed shoot growth during winter. Increasing plant nitrogen concentration from fall to spring at temperate heaths may, hence, be due to nitrogen uptake. Our results suggest that the potential for nitrogen uptake in plants at winter is of the same order of magnitude as at summer. Hence, winter nitrogen uptake in ecosystems in the temperate/boreal region should be considered when making annual nitrogen budgets of heath ecosystems, and the view of plant nutrient uptake as low in this climatic region during winter should be revised.

PMID:
15868162
DOI:
10.1007/s00442-005-0044-1
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center