Format

Send to

Choose Destination
Dev Dyn. 2005 Jul;233(3):1091-101.

Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium.

Author information

1
Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Abstract

The epicardium of the heart originates from a cluster of mesothelial-derived cells that develop beneath the sinus venosus in the embryonic day (E) 9.0-9.5 mouse. The subsequent proepicardium-epicardium transition that forms the epicardial layer of epithelial cells covering the myocardial surface is nearly complete by E10.0-E10.5 and results in a fully covered heart by E11.0. In this study, we show that an established model of congenital heart disease, the retinoid X receptor alpha knockout (RXRalpha-/-) embryo, displays a malformed epicardium. At E10.0-E10.5, the RXRalpha-/- has several large regions of myocardium that remain bare. Furthermore, by E11.5-E12.5, when a complete epithelial layer is formed in the mutant, large regions of the epicardium become distended from the underlying myocardium. Close examination of the E9.5 mutant revealed an elevated apoptosis level within the proepicardial cluster of mesothelial cells. Additionally, among the extracellular matrix proteins analyzed, expression of fibronectin was elevated in the RXRalpha-/- as assessed by immunostaining in paraffin-embedded sections and proepicardial explants. We propose that these events contribute to a developmental delay in the formation of the epicardium, which leads to an abnormal epicardium and ultimately contributes to the cardiac malformations seen in the RXRalpha-/-.

PMID:
15861408
PMCID:
PMC3094707
DOI:
10.1002/dvdy.20393
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center