Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2005 Aug;146(8):3589-95. Epub 2005 Apr 28.

Mathematical model of paracrine interactions between osteoclasts and osteoblasts predicts anabolic action of parathyroid hormone on bone.

Author information

Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2.


To restore falling plasma calcium levels, PTH promotes calcium liberation from bone. PTH targets bone-forming cells, osteoblasts, to increase expression of the cytokine receptor activator of nuclear factor kappaB ligand (RANKL), which then stimulates osteoclastic bone resorption. Intriguingly, whereas continuous administration of PTH decreases bone mass, intermittent PTH has an anabolic effect on bone, which was proposed to arise from direct effects of PTH on osteoblastic bone formation. However, antiresorptive therapies impair the ability of PTH to increase bone mass, indicating a complex role for osteoclasts in the process. We developed a mathematical model that describes the actions of PTH at a single site of bone remodeling, where osteoclasts and osteoblasts are regulated by local autocrine and paracrine factors. It was assumed that PTH acts only to increase the production of RANKL by osteoblasts. As a result, PTH stimulated osteoclasts upon application, followed by compensatory osteoblast activation due to the coupling of osteoblasts to osteoclasts through local paracrine factors. Continuous PTH administration resulted in net bone loss, because bone resorption preceded bone formation at all times. In contrast, over a wide range of model parameters, short application of PTH resulted in a net increase in bone mass, because osteoclasts were rapidly removed upon PTH withdrawal, enabling osteoblasts to rebuild the bone. In excellent agreement with experimental findings, increase in the rate of osteoclast death abolished the anabolic effect of PTH on bone. This study presents an original concept for the regulation of bone remodeling by PTH, currently the only approved anabolic treatment for osteoporosis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center