Send to

Choose Destination
See comment in PubMed Commons below
Plant J. 2005 May;42(4):481-91.

Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells.

Author information

  • 1Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan.


Tobacco cells (Nicotiana tabacum L. Bright Yellow T-13) exposed to harmful naphthols accumulate them as glucosylated and further modified compounds [Taguchi et al. (2003a) Plant Sci. 164, 231-240]. In this study, we identified the accumulated compounds to be 6'-O-malonylated glucosides of naphthols. Cells treated with various phenolic compounds accumulated the flavonoids mainly as malonylglucosides. To clarify the function of this malonylation in tobacco, we isolated the cDNA encoding a malonyltransferase (NtMaT1) from a cDNA library derived from tobacco cells. The heterologous expression of the gene in Escherichia coli revealed that the recombinant enzyme had malonyltransferase activity against several phenolic glucosides such as flavonoid 7-O-glucosides, flavonoid 3-O-glucosides and naphthol glucosides. The substrate preference of the enzyme was similar to that of the tobacco cell extract. Malonylation activity in the transgenic cells markedly decreased with the suppression of the expression of NtMaT1 mRNA in tobacco BY-2 cells by RNA interference. The compounds administered to the transgenic cells were accumulated in the cells as glucosides or other modified compounds in place of malonylglucosides. These results show that NtMaT1 is the main catalyst of malonylation on glucosides of xenobiotic flavonoids and naphthols in tobacco plants.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center